Vector bundles on non-Kaehler elliptic principal bundles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable bundles on positive principal elliptic fibrations

Abstract Let π −→ X be a principal elliptic fibration over a Kähler base X . We assume that the Kähler form on X is lifted to an exact form on M (such fibrations are called positive). Examples of these are regular Vaisman manifolds (in particular, the regular Hopf manifolds) and Calabi-Eckmann manifolds. Assume that dimM > 2. Using the KobayashiHitchin correspondence, we prove that all stable b...

متن کامل

Lectures on Principal Bundles

The aim of these lectures is to give a brief introduction to principal bundles on algebraic curves towards the construction of the moduli spaces of semistable principal bundles. The first lecture develops the basic machinery on principal bundles, their automorphisms. At the end of the first chapter, we give a proof of theorem of Grothendieck on orthogonal bundles. The second chapter, after deve...

متن کامل

Non-simple Vector Bundles on Curves

Let A be a finite dimensional unitary algebra over an algebraically closed field K. Here we study the vector bundles on a smooth projective curve which are equipped with a faithful action of A.

متن کامل

A COVERING PROPERTY IN PRINCIPAL BUNDLES

Let $p:Xlo B$ be a locally trivial principal G-bundle and $wt{p}:wt{X}lo B$ be a locally trivial principal $wt{G}$-bundle. In this paper, by using the structure of principal bundles according to transition functions, we show that $wt{G}$ is a covering group of $G$ if and only if $wt{X}$ is a covering space of $X$. Then we conclude that a topological space $X$ with non-simply connected universal...

متن کامل

Complex Structures on Principal Bundles

Holomorphic principal Gbundles over a complex manifold M can be studied using non-abelian cohomology groups H(M,G). On the other hand, if M = Σ is a closed Riemann surface, there is a correspondence between holomorphic principal G-bundles over Σ and coadjoint orbits in the dual of a central extension of the Lie algebra C∞(Σ, g). We review these results and provide the details of an integrabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2013

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.2783